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Here we present a new strategy for designing and filtering potentially massive combinatorial libraries using
structural information of a binding site. We have developed a variation of the structural interaction fingerprint
(SIFt) named r-SIFt, which incorporates the binding interactions of variable fragments in a combinatorial
library. This method takes into account the 3D structure of the active site of the target molecule and translates
desirable ligand-target binding interactions into library filtering constraints. We show using the MAP kinase
p38 as a test case that we can efficiently analyze and classify compounds on the basis of their abilities to
interact with the target in the desired binding mode. On the basis of these classifications, decision tree
models were generated using the molecular descriptors of the compounds as predictor variables. Our results
suggest that r-SIFt coupled with the classification models should be a valuable tool for structure-based
focusing of combinatorial chemical libraries.

Introduction

The past decade has witnessed significant advances in
combinatorial chemistry. With the discovery and availability
of more reagents and reaction schemes, as well as the advances
of chemical synthesis methods, the number of compounds that
are synthetically feasible is dauntingly massive.1 In recent years,
a great amount of research effort has been focused on how to
design smaller libraries that are tailored to specific drug targets
or gene-families, instead of generating large, diverse, and general
purpose libraries, with an aim to make the lead discovery and
optimization processes more efficient and cost-effective.2 Several
strategies and techniques in designing subsets of combinatorial
libraries have been previously discussed.3-7

Parallel with the advances in chemical library synthesis, high-
throughput X-ray crystallography and NMR techniques are
becoming more and more sophisticated, generating large
numbers of experimental 3D structures of drug target molecules.
This structural information provides great insights into the
activity, mechanism and regulation of drug target molecules,
and it provides the basis of structure-based drug design.8,9

Some techniques have been available for leveraging the
structural information of the target molecules into library design
and filtering. One example is the 3D pharmacophore model. If
a collection of known active molecules are available, abstract
3D pharmacophore models can be generated from these
compounds by extracting the common spatial arrangement of
pharmacophoric features. These models can be applied to filter
a large library and identify compounds that also satisfy the
pharmaophore.10 An alternative and more directed approach is
termed structure-based focusing (SBF). This method enables
combinatorial chemical libraries to be tailored to binding sites
using specific interaction constraints.11 However, the definition
of which constraints to use in structure-based focusing is
somewhat ad-hoc and not systematic.

We have recently developed structural interaction fingerprint
(SIFt), a novel method for efficiently representing, visualizing,
and analyzing massive amounts of structures. SIFt has been

proven to be useful in facilitating post-docking analysis, virtual
screening, and database mining of structural data.11,12 Key to
the SIFt method is the generation of structural interaction
fingerprints, 1D binary bit-strings that represent important
target-ligand binding interactions, thus making the structures
amenable to easy mathematical manipulation and comparison.
We have shown that by combining SIFt and other conventional
scoring functions, we can achieve much better confidence in
reproducing the true binding modes of the compounds and
thereby obtain improved library enrichments from virtual
screening.11,12

In silico virtual screening and computer-aided drug design
have become increasingly important in drug discovery.13,14How
to intelligently leverage the 3D structural information of target
molecules and use it in designing target-focused libraries is of
great interest in the field. In this paper, we propose a new
strategy for designing and filtering target-specific combinatorial
libraries. To this purpose, we designed r-SIFt, a variation of
the original SIFt, that incorporates the binding information
pertinent to different variable fragments of a combinatorial
library into the fingerprint. The “r” in r-SIFt stands for the
various R groups of a combinatorial library. In r-SIFt, the binary
bits represent whether a particular R group or the core fragment
of a compound is interacting with a particular residue of the
target molecule. We show that this variation of SIFt provides a
way to directly and conveniently visualize how different
fragments of the ligands are placed in the active site and that
r-SIFt is very sensitive and effective in separating different
binding modes, therefore making it especially useful for
analyzing and organizing the virtual screening results of a
combinatorial library.

We applied the r-SIFt method to classify compounds on the
basis of their abilities to interact with the target in a desired
binding mode. On the basis of these classifications, we built
machine learning models and demonstrated that these predictive
models can effectively enrich large libraries to generate a subset
of compounds that are more likely to adopt the same desirable
binding mode. We have tested this strategy on several different
combinatorial libraries of MAP kinase p38 inhibitors. The results
demonstrate that the predictive models based on r-SIFt clas-
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sification can be used as effective filters to eliminate poor
binders from a large combinatorial library in various stages of
lead discovery and optimization, thus generating smaller, more
efficient, target-focused libraries for subsequent screening.

Materials and Methods

Our r-SIFt analysis consists of the following five major
computational steps: library enumeration and docking, calculation
of 2D molecular descriptors of the variable R groups, construction
of r-SIFt patterns, clustering and classification of r-SIFt patterns,
and generation of predictive models. The relationship of these five
major components is summarized in Figure 1.

1. Virtual Library Enumeration and Docking. We generated
several virtual chemical libraries and ensembles of docking poses
for our analysis. A crystal structure of MAP kinase p38 (PDB
accession code 1ouk)15 was used as the target molecule in all of
our virtual screening experiments. The first set of docking poses
was used to demonstrate the ability of r-SIFt to efficiently
differentiate and visualize different binding modes. The pyridinyl
imidzole inhibitor cocrystallized with p38 in the 1ouk structure
(Figure 3).1, which has been identified by Merck to be a very
selective and potent p38 inhibitor, was docked onto the original
target molecule. We retained 150 poses with the highest Cscores22

for subsequent analysis. The docking experiments were carried out
with FlexX16 in Sybyl.17 The ligand binding site was defined using
a cutoff radius of 10 Å from the ligand (i.e., the conformation in
the crystal structure) combined with a core subpocket cutoff distance
of 4 Å. The FlexX scoring function was used for scoring during
the docking. Five different scoring functions, including Fscore,16

ChemScore,18 Gscore,19 PMF Score,20 and Dscore,21 were used as
voting scores in the Cscore22 utility in Sybyl. Figure 2a shows these
150 poses of1 generated from the docking experiment. They display
a variety of binding modes at the active site of the target protein.

To compare and contrast the r-SIFt patterns of different
compound structures, we also performed docking experiments using
five chemically distinct compounds (Figure 3), using the same
FlexX docking procedure. These five compounds are1, discussed
above (PDB code 1ouk);2 (SB203580), a well-known pyridinyl
imidazole p38 inhibitor;23 3 (SKF-86002), a compound discovered
by SmithKline Beecham;24 4 (2-(2,6-dichlorobenzyl)-5-(4-fluo-
rophenyl)-6-pyridin-4-methyl-5H-pyrimidin-4-one), a compound
first reported by Amgen;24 and 5 (2-[1,3]dithietan-2-ylidene-2-
pyridin-4-yl-1-(4-trifluoromethoxyphenyl)ethanone), a molecule that
exhibits no p38 inhibition activity.25 Except for5, the other four
compounds are all known to be potent p38 inhibitors.15,24 At the
time this paper was being prepared, we were not aware of the
cocrystal structure of3, 4, or 5 with p38 in public databases. Figure
3 shows the 2D chemical structures of these compounds, including
our definitions of their cores and variable R groups. For all docking
experiments, top 10 poses of each compound with the highest
Cscores were retained for subsequent analysis.

In addition, to test our r-SIFt method on combinatorial libraries,
we enumerated five different libraries using three distinct p38
inhibitors as template scaffolds,1, 3, and4, varying only one R
group at a time in each library. A common set of reagents consisting
of about 10,000 commercially available aryl bromides26 was used
as R groups in the enumeration of these libraries. Three libraries
(1-R1, 3-R1, and 4-R1) were enumerated by varying the R1 group

of the three templates, respectively. The fourth and the fifth libraries
(1-R2 and 1-R3) were based on1, varying R2 and R3 groups,
respectively (Table 1). According to the cocrystal structures of 1ouk
and other similar inhibitors (PDB codes 1a9u, 1bl6, 1bl7, 1bmk,
1ove, etc.),15,23 in the “native binding mode”, the R1 groups are
expected to interact with the hydrophobic pocket27 of p38. The R2
portion of1, on the other hand, is positioned in the vicinity of the
adenine binding site in the hinge region, whereas the R3 group
interacts with the phosphate binding region (P-loop).15,27 Library
enumeration processes were carried out using Pipeline Pilot.28 All
the reaction products were prefiltered by removing salts, isotopes,
and inorganic compounds as well as molecules with molecular
weight less than 400. From the remaining library, a subset of
molecules (maximum number 2500) with maximal chemical
diversity was sampled for further analysis. The total number of
selected compounds of each library is as follows: 1-R1, 2208; 1-R2,
2450; 1-R3, 2000; 3-R1, 2442; 4-R1, 1750.

These five libraries were docked onto the p38 target molecule
(1ouk), using the same docking procedure as previously described.
Ten poses with the best Cscores for each molecule were saved for
further r-SIFt analysis (see sections 3 and 4). Reassuringly, the
docking experiments were able to reproduce the native cocrystal
structure of1, with an rmsd (for heavy atoms) less than 0.6 Å,
confirming the validity of the docking procedure.

2. Calculation of 2D Descriptors.2D molecular descriptors of
the R group monomers (after substituting the bromide with a
hydrogen atom) were calculated using Pipeline Pilot.28 To make
the method more amenable to huge libraries, we decided to omit
the time-consuming calculation of 3D descriptors. A total of 37
2D descriptors were generated.

The molecular descriptors set was further processed by removing
variables with little or no variance across the whole library. In
addition, descriptors with high redundancy and multicollinearity
were removed. This cleaning step was performed using the
unsupervised forward selection (UFS) algorithm27 with the stopping
criteria of Rmax

2 (i.e., the squared multiple correlation coefficient,
SMCC) cutoff equal to 0.95 and the minimum standard deviation
of variables set to 0.05. The final nonredundant set contains the
following 24 descriptors: F_COUNT, P_COUNT, S_COUNT,
CL_COUNT, BR_COUNT, ALOGP, MOLECULAR_POLAR-
SURFACEAREA, NUM_H_ACCEPTORS, NUM_H_DONORS,
NUM_ATOMS, NUM_HYDROGENS, NUM_POSITIVEATOMS,
NUM_ROTATABLEBONDS, NUM_BRIDGEBONDS, NUM-
_RINGS, NUM_AROMATICRINGS, NUM_RINGASSEMBLIES,
NUM_CHAINS, NUM_CHAINASSEMBLIES, NUM_STEREO-
BONDS, NUM_UNKNOWNSTEREOBONDS, NUM_ATOM-
CLASSES, LOGD, and MOLECULAR_WEIGHT.

3. Generation of r-SIFts. r-SIFt is a variation of structural
interaction fingerprint (SIFt).11,12 It incorporates the binding
information about different variable R groups of a compound into
the fingerprint. r-SIFt was specifically designed for processing and
analyzing virtual screening results of combinatorial libraries. Both
original SIFts and r-SIFts are binary bit-strings, representing the
target-ligand interaction features of the binding site residues. The
main difference between the original SIFt and r-SIFt lies in the
meanings of the interaction bits that comprise the entire fingerprints.
In the original SIFt, the bits represent the presence or absence of
different types of interactions (contact, polar, hydrogen bonds,
hydrophobic, etc.) occurring at each selected residue. In r-SIFt, the
bits represent whether a certain R group or core fragment of the
compound satisfies a contact interaction (i.e., within a distance
threshold) with a particular protein residue. For example, suppose
a ligand is comprised of core, R1, R2, and R3. Then for each
binding site residue, we can use a four-bit-long binary string to
represent the interaction pattern at this residue. These four bits
represent whether the core, R1, R2, and R3 interact with this residue,
respectively. If the core fragment is interacting with the residue,
the “core” bit is turned on (1), otherwise it remains off (0). The
same is true for the other bits. The final r-SIFt is constructed by

Figure 1. An overview of the major computational steps in r-SIFt
analysis.
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Figure 2. (a) Overlay of 150 poses of1 docked onto the human p38 structure (PDB ID 1ouk). For comparison, the cocrystal structure of the
molecule is shown in yellow while the docking poses are colored according to atom types. (b) Hierarchical clustering of the r-SIFts of 150 docking
poses of1. Each r-SIFt is represented as one horizontal row in the heat map, and only on-bits (1) are shown. The interaction bits are colored
accordingly to the respective molecular fragments (red, core; blue, R1; purple, R2; green, R3; see Figure 3 for R group definitions). The left side
of the heat map shows the dendrogram of the hierarchical clustering result. r-SIFts in the heat map are rearranged according to the order given by
clustering. Four major clusters (labeled 1-4) identified from the dendrogram are labeled on the right side of the r-SIFt heat map. The line of blocks
above the heat map indicates the locations of the corresponding binding site residues in the protein. The residues are grouped into six different
regions, as described previously.11 For reason of clarity, the 56 residue numbers as well as the interaction bits are not displayed in the figure. The
figure was generated using Spotfire.33 (c-f) Overlay of the docking poses of each cluster (1-4), shown in the same reference frame as Figure 2a.
The cocrystal structure of1 is again displayed as a yellow stick model in each figure.
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sequentially concatenating the four-bit-long binary strings for all
the binding site residues.

A panel of 56 residues of p38 previously identified as the kinase
ligand-binding site was used as the reference frame for r-SIFt
construction.11 These residues are located in the vicinity of the ATP
binding pocket in the cleft of the N-terminal and C-terminal
domains, as well as at the substrate-binding site.

The implementation of r-SIFt used in this paper is based on the
contact distance between the heavy atoms of a residue and different
fragments of the ligands. There are different possible embodiments
of r-SIFt. Here we used a four-bit-long binary bit string (and in
the case of3 and5, three bits, as they do not have R3) to represent
the interactions involved in each binding site residue. Each bit
represents whether a particular fragment (core, R1, R2, or R3) is
within a certain distance cutoff (set to 3.5 Å) to the particular
residue. If any heavy atom of a particular fragment is within 3.5 Å
from any heavy atom of the residue, then this particular bit is turned
on (1), otherwise this bit remains off (0). The final fingerprints
were constructed by concatenating all these 56 small bit-strings
together in ascending residue number order. The total length for
each r-SIFt pattern is 56× 4 ) 224 bits, except for compounds in
library 3-R1, in which R3 was absent. The length for r-SIFts in
3-R1 is 56× 3 ) 178 bits.

4. Analysis and Clustering of r-SIFts.We used the Tanimoto
coefficient30 as the similarity measurement between two r-SIFts.
The Tanimoto coefficient (Tc) between two bit strings A and B is
defined as

where|A ∩ B| is the number of on-bits common in both A and B
and |A ∪ B| is the number of on-bits present in either A or B.

For the 150 docking poses ensemble of1, as well as libraries
1-R1, 1-R2, and 1-R3, the cocrystal structure of the inhibitor1
was used as the reference structure. As for3 and4, the cocrystal
structures were not available. We manually examined the top
docking poses (with top FlexX scores) and selected a best pose for

each inhibitor. These two best poses were consistent with the
expected native binding modes as observed in the cocrystal
structures of similar inhibitors (1ouk, 1a9u, 1bl6, 1bl7, 1bmk, 1ove,
etc.) and satisfied all the conserved interactions with the target that
were observed in other p38 structures.12 We assumed them to be
the correct binding mode and used these poses as the reference
structures. We applied an agglomerative hierarchical clustering31

to analyze and reorganize each library of poses, using Tanimoto
coefficients as the similarity measurement. Clusters of protein-
ligand complex structures were selected on the basis of the
dendrogram of the r-SIFts.

In previous publications, we have shown that, by combining the
SIFt-based approach and conventional scoring functions, one could
achieve much better confidence in reproducing the true binding
modes of the compounds and better library enrichment perfor-
mance.11,12 Our experience with docking known p38 inhibitors
suggested that in many cases the best pose given by a conventional
scoring function did not always adopt the native binding mode.
However, a good placement with correct binding mode usually can
be found among the top 10 poses. We have previously shown that
for p38 inhibitors, retaining top 10 poses then selecting the poses
with the best binding modes based on their SIFt similarities gave
much better enrichment performance than using the conventional
scoring function alone.12 Here, we applied a similar strategy to
process the docking results of the combinatorial libraries. We
harvested the best 10 poses (with best Cscores) of each compound
and then generated the r-SIFt patterns. Tanimoto coefficients were
calculated against the r-SIFt of the respective reference structures
(either the cocrystal structure or the best predicted pose as described
above). The pose with the highest Tanimoto coefficient was selected
as the best pose for this compound and used in subsequent ranking
or hierarchical clustering.31 All hierarchical clustering calculations
of the r-SIFts were carried out using Spotfire.33

5. Construction of Decision Tree Classification Models.
Hierarchical clustering grouped poses into different clusters ac-
cording to their binding modes. By visual inspection, we could then
easily identify the cluster in which compounds adopt the native
binding mode. These compounds were classified as native, that is,
they are “dockable”, because they were predicted by the docking
program to be able to interact with the target molecule in a way
similar to known active inhibitor(s). All other molecules, whose
predictive binding modes are different from the native structure,
were classified as in the non-native class.

After classifying the compounds, we generated decision tree
models using CART (version 5, Salford Systems).32 The nonre-
dundant set of 2D descriptors was used as predictive variables and
the binding mode class (native or non-native) as the target variable.
The decision trees are comprised of a set of nodes and leaves (end

Figure 3. 2D chemical structures and R group definitions of compounds used in the study.

Table 1. Numbers of Native and Non-Native Compounds in Each
Single R Group Variation Library

library total native non-native

1-R1 2208 1428 780
3-R1 2442 266 2176
4-R1 1745 478 1267
1-R2 2450 352 1917
1-R3 2000 181 1819

Tc(A,B) ) |A ∩ B|
|A ∪ B|
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nodes). Each node contains a bifurcation of path based on the value
of a particular descriptor. We used 10-fold cross-validation,
randomly assigning 90% of the data points as the training set and
10% as testing set. Equal weights were applied to both native and
non-native classes. The performance of a model was measured by
predictive accuracies for both classes in the training set and the
test set.

Results

1. Organization of Docking Poses.We generated 150 poses
by docking1 onto p38 for r-SIFt analysis. Figure 2a shows the
placements of these poses, which vary considerably in their
binding modes. Hierarchical clustering of the r-SIFt patterns is
shown in Figure 2b. The dendrogram clearly reveals four major
clusters (clusters 1-4), each of which represents a distinct
binding pattern (Figure 2c-f). This result demonstrates that
r-SIFt is a very convenient and effective method for separating
different binding modes.

In addition to its sensitivity to binding mode variations, r-SIFt
renders a way for easy visualization and interpretation of how
molecules are placed at the active site of the target molecule.
Figure 2b displays the reorganized r-SIFt patterns as a heat map.
Different types of interaction bits pertinent to different fragments
of the compounds (core, R1, R2, and R3) are colored differently
in the heat map. Since the bits in fingerprints were arranged in
the same ascending residues number order, from this r-SIFt heat
map one can easily reconstruct the overall orientation and
position of the molecule at the active site, that is, which fragment
of the molecule interacts with which region of the target
molecule. Cluster 2 is the native cluster (Figure 2d). Within
this cluster, the R1 groups (blue bits in the heat map) occupy
and interact extensively with the hydrophobic pocket of p38,
which is located at the back of the ATP binding site and is
comprised of some residues in a sequence region spanning from
â3 to â5 (includingRC helix).27 This binding information was
revealed in the fingerprint heat map as blue bits (representing
the R1 fragment) showing up in the region pertinent to the
hydrophobic pocket. The R2 groups, on the other hand, interact
with the adenine binding site in the hinge region; therefore, the
majority of the purple bits (representing R2) show up in the
hinge region. The R3 group (green bits) in this cluster touches
the catalytic loop and the Mg-loop regions. Similarly, using this
heat map as a guide, one can reconstruct the binding modes of
other clusters and easily appreciate the differences among
various groups, even without looking at their structures.

2. Comparison of r-SIFts of Different p38 Inhibitors.
Furthermore, we carried out docking experiments using four
known p38 inhibitors (1-4) and a compound (5) with no p38
inhibition activity. These compounds exhibit different chemical
scaffolds (Figure 3). r-SIFt patterns were calculated for all
docking poses and for each compound we selected three poses
that displayed the best possible similarity scores against either
the cocrystal structure or the respective best pose (i.e., the native
binding mode). For5, we selected three poses with the highest
Tanimoto coefficients against the cocrystal structure of1 (1ouk),
as it was difficult to predict the true binding mode of this
noninhibitor. Hierarchical clustering results of these r-SIFt
patterns are shown as a heat map in Figure 4a. The r-SIFt
generated from the cocrystal structure of1 is also displayed for
comparison. Figure 4b-g shows the 3D structures of the poses
of each compound within the same structural reference frame.

As shown in Figure 4a, not surprisingly, the r-SIFt patterns
are first clustered together by each compound. Furthermore, the
distance between two clusters in the dendrogram reflects the
degree of similarity in the binding mode. In all four p38

inhibitors (1-4), the overall positions of the molecular fragments
within their r-SIFts are consistent. In most of the cases, the R2
group (purple bits) is in contact with the hinge region, whereas
the R1 group (blue bits) is highly concentrated in the hydro-
phobic pocket region. This result shows that different p38
inhibitors bind to the target molecule with a very consistent
overall interaction pattern.5, on the other hand, displays a
completely different binding mode and is the most distant from
other inhibitors in the dendrogram.

A more detailed investigation of the r-SIFt patterns reveals
some degree of variation between different known inhibitors.
For example, the R2 group of1 (purple bits in Figure 4a) shows
more extensive interactions in the second half of the hinge region
(around residue 110) than other inhibitors. Such extensive
contact between1 and the hinge has been previously observed
and rationalized.12,15 In addition, 1 exhibits more interaction
points than other compounds in the hydrophobic region. This
difference can be rationalized by the fact that it has a bulkier
trifluorobenzene R1 group as opposed the smaller 3-fluorophenol
R1 of the others. In addition, the interactions between the R2
of 4 and the hinge region are relatively sparser than for other
molecules. As seen from the structures, the4 poses predicted
by our docking experiments move slightly away from the hinge,
so that the carbonyl at the core can make hydrogen-bonding
interaction with Lys-53. The relative distance between different
compounds correlates well with chemical similarity, with2 and
3 being very close to each other (their R1 and R2 are identical
and cores are similar), while1 and 5 (chemically more
dissimilar) are farther apart in the dendrogram.

These p38 inhibitors adopt a generally similar binding pattern
when binding to the same target molecule, and their binding
modes are highly correlated to their chemical structures. The
way they bind to a target molecule is dictated by their own
chemical properties. Conversely, given a particular target, we
can expect that only molecules exhibiting certain physical and
chemical properties are able to bind to the target with desirable
binding mode. Therefore, finding the rules for such chemical
feature subspace would be highly valuable in rational library
design.

3. Analysis of Combinatorial Libraries. To search for the
rules governing the behaviors of the compounds within a target,
we first enumerated five combinatorial libraries and used r-SIFt
to help investigate their “dockability”, that is, whether they were
able to dock onto the target with an expected binding mode.
After docking the compounds and generating r-SIFts, we carried
out hierarchical clustering analyses to separate different binding
modes. Figure 5a shows the organization of these r-SIFt patterns
of library 1-R1. The first major cluster (illustrated in green) is
the native cluster in which the relative positions and orientations
of the molecules in the cluster are similar to those observed in
the cocrystal structure (1ouk). Examples of the compounds in
this native cluster are shown in Figure 5b. The rest of the library
was labeled as non-native (shown in red). Figure 5c shows the
chemical structures of some example molecules in both native
and non-native clusters. We should note that all of these
examples shown in Figure 5c had high docking scores; therefore,
using conventional docking score alone we would not have been
able to effectively separate the ones with native binding. A few
molecular descriptors show modest correlation with the r-SIFt
classification. For example, in the native cluster, the molecular
surface areas of the R1 groups in general tend to be smaller
than in the non-native cluster (data not shown). This difference
can be rationalized as the size of the p38 hydrophobic pocket
precluding a very large R1 group from occupying the pocket.
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However, neither the size nor the hydrophobicity of the R1
groups alone (or the combination of these two) was able to
successfully explain the classification variance. Therefore, a

predictive model that involves more complicated combination
of different descriptors was required. The CART decision tree
method was used to build such classification models.

Figure 4. (a) Hierarchical clustering of r-SIFts derived from the docking poses of five different compounds docked into the p38 structure (1ouk).
The bit-coloring scheme and structure layout are identical to those in Figure 2b. For each compound, three poses with the best r-SIFt Tanimoto
coefficients were chosen and analyzed. Since3 does not contain R3, all the r-SIFt patterns on display were constructed by omitting all the R3 bits
(if present). For comparison purposes, the r-SIFt pattern of the cocrystal structure of1 is also included. (b) An overlay of the best docking pose of
each of the five molecules, within the same active site of the target molecule structure. The cocrystal structure of1 is shown as a thin yellow line
model for comparison. (c-g) Structures of the docking poses of each compounds (three poses per molecule) used in Figure 4a, shown in the same
reference frame as in part b. The compounds are (c)1, (d) 2, (e) 3, (f) 4, and (g)5.
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We generated a decision tree model for each of the five com-
binatorial libraries, using a nonredundant set of their 2D molec-
ular descriptors as predictive variables. Figure 6 shows the opti-
mal decision tree model for library 1-R1. The CART program
also produced a sorted list of descriptors based on their levels
of importance. Descriptors that are pertinent to the size, shape,
polarity, and hydrophobicity of the R1 group, such as total num-
ber of atoms, total surface area, polar surface area, molecular

weight, and logD, are among the most informative decision
tree splitters. This finding is consistent with the fact that the
size, shape, and hydrophobic nature of the hydrophobic pocket
impose restrictions onto the R1 groups such that only those
compounds with the right size, shape, and hydrophobicity were
able to fit in the well-defined site with the desired binding mode.

The performances of these decision tree models were evalu-
ated by the prediction accuracies for both native and non-native

Figure 5. (a) Classification of the 1-R1 library compounds based on their r-SIFt similarities. The coloring scheme is the same as in Figure 2b. For
clarity, we replaced the dendrogram as shown in Figures 2b and 4a with a Tanimoto coefficient distance matrix of the r-SIFt patterns. The compound
order in the distance matrix matches that in the SIFt heat map, and the coloring gradient in the distance matrix corresponds to the values of the
Tanimoto similarity score, from dark red (highest similarity) to dark blue (least similar). The compounds that display the native binding mode
similar to the cocrystal structure (Figure 5b) in which the R1 groups are correctly located in the hydrophobic region are labeled as a “native
cluster”, and the rest of the compounds are labeled as “non-native”. (b) The 3D structures of 200 example compounds in the native cluster. The
cocrystal structure of1 is shown as a yellow stick model. (c) Examples of compounds in native and non-native clusters. The R1 attachment points
are labeled with an asterisk. The numbers correspond to the unique IDs in the original reagent library.
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classes. The results are summarized in Table 2. We used 10-
fold cross-validation during the construction process, using 90%
of the data points (randomly selected) each time to build the
model while setting aside 10% of the data as test set for
validation. The accuracies against the test data sets left aside
during the decision tree construction is a better performance
indicator.32 Most of these models gave reasonably good and
balanced performances, with accuracies (against test sets) in the
range of 70-80% for both native and non-native classes of
molecules.

The three R1 libraries were derived from different scaffolds.
Since the variable R1 groups in these libraries all target the
same hydrophobic binding pocket, it is reasonable to expect
that the rules derived from these libraries are closely related to
each other. To test this hypothesis, we applied each decision
tree model to predict the other two R1 libraries. The cross-
library prediction results are summarized in Table 3. 1-R1 and
3-R1 are interchangeable, with their cross-library prediction
accuracies remaining 71-78% for both classes of molecules, a
performance comparable to their self-prediction accuracies

(Table 2). Interestingly, all cross-library prediction performances
containing the 4-R1 library show different accuracies for native
and non-native classes: the native classes can be predicted more
accurately (81-90%) than the non-native molecules (only 50-
62%).

To test the expandability of these predictive models, we
further regenerated decision trees by randomly setting aside 25%
(500 compounds) of the original library as the evaluation set.
Models were built using the remaining 75% of the data, with
exactly the same parameter settings and the same 10-fold cross-
validation. We then applied each model to test the respective
evaluation set that was never used in the model building process.
The prediction accuracies were all comparable to those shown
in Table 2 (data not shown), indicating that the models are
expandable and therefore can be used to filter large libraries.

Furthermore, we applied the same approach to investigate
larger libraries of true combinatorial nature, i.e., varying more
than one position simultaneously. To determine the suitable size
for a test library, we first investigated the performance of an R
group decision tree as a function of the sample size. We

Figure 6. A decision tree predictive model for the 1-R1 library. The green end nodes (labelled “1”) are predicted native cluster; whereas the red
end nodes (labelled “0”) are non-native cluster.

Table 2. Performances of the Decision Tree Predictive Modelsa

training set test set

library native non-native native non-native

1-R1 80 84 80 77
3-R1 78 80 77 79
4-R1 83 74 73 70
1-R2 71 72 70 71
1-R3 64 75 57 68

a Numbers are the percentage of molecules in either native or non-native
classes that were accurately predicted by the decision tree models. Ten
percent of each original data set was randomly selected and set aside as
the validation test set and was not used in model building.

Table 3. Cross-Library (R1 variation only) Model Prediction
Accuraciesa

target library

1-R1 3-R1 4-R1model
library native non-native native non-native native non-native

1-R1 - - 78 71 90 50
3-R1 74 74 - - 83 56
4-R1 81 61 82 62 - -

a Each of the predictive models generated from three different R1 libraries
(i.e., model libraries) was used to test against the other two R1 libraries
(i.e., target libraries). The numbers represent the percentage of molecules
in the target libraries that were correctly predicted by the model.
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randomly set aside 25% of the 1-R1 library as an evaluation
set. Several decision tree models were generated, each using
different numbers of compounds randomly selected from the
remaining 75% of the library. The performances of these models
were measured against the same evaluation set, and the results
are plotted in Figure 7.

Interestingly, the performance of the model (for both native
and non-native classes) starts to level off after a sample size of
∼100. Increasing the training set size beyond 200 actually leads
to little gain in predictive accuracy. This result implies that,
for the purpose of the r-SIFt analysis, if selected randomly, a
training set of modest size is able to effectively cover most of
the chemical subspace of the whole library.

Using1 as template, we enumerated a combinatorial library
of 10 000 compounds with 100 R1 and 100 R2 groups, while
keeping the core and R3 fragment unchanged. We wanted to
construct decision tree predictive models for R1 and R2 from
this full matrix combinatorial library in which more than one
R group was varied simultaneously, to see how different variable
groups affected each other. Both R1 and R2 used the same
monomer library of 100 commercially available aryl bromides,
which had not been used in the construction of the five
independent libraries described earlier. A sample size of 100
has been shown to be able to generate a reasonably stable
predictive model (Figure 7).

This R1(100)× R2(100) training library was then docked
onto the 1ouk structure and the same r-SIFt clustering analysis
was carried out. From the native cluster, we gathered a list of
dockable R1 and R2 groups. An R1 group was considered
dockable if at least one compound containing this group as R1
adopted the native binding mode. The same was true for R2.
The rest of the R1 or R2 groups were classified as undockable,
i.e., no compound with this R group was found in the native
cluster.

On the basis of these classifications, two separate decision
tree models were built for R1 and R2 groups, respectively, using
the same parameter settings described before. The performances
of these two models were measured by the predictive accuracies
against their respective cross-validation testing sets. For the R1
model, the accuracies were 67% for the native class and 72%
for the non-native class; for the R2 model, accuracies were 66%
for the native class and 75% for the non-native class. These
predictive accuracies were all consistent with those generated

from independent libraries with single variable point (Table 2).
In fact, the independent R1 and R2 models were both compa-
rable to the new models: the old R1 and R2 models were able
to predict the dockability of the R groups in the 100× 100
library with 88% and 92% accuracies for the native class, and
59% and 61% for the non-native class, respectively.

The results from the 100× 100 combinatorial library
suggested that different variable groups can be treated inde-
pendently. To further test the hypothesis, we enumerated a
library of 1 million compounds using1 as template, varying
R1 (100), R2 (100), and R3 (100) simultaneously. A subset of
3580 compounds was randomly sampled from this library and
docked onto the 1ouk structure. We then used the R1, R2, and
R3 models that were built from the respective single-point
variation libraries to classify each of the variable groups in the
subset. Compounds whose R1, R2, and R3 were all classified
as good groups by their respective models were considered
dockable. A total of 88 compounds out of 3580 passed all three
filters. Docking and r-SIFt analysis showed that 29 (0.8% of
3580) compounds were able to adopt the native binding mode,
among which 17 were correctly predicted by the combination
of R1, R2, and R3 models. Therefore, 58.6% (17/29) of the
true dockable compounds were correctly predicted; for the non-
native class the success rate was 3480/3551) 98%. We can
also use the enrichment factor (EF),35 which represents the
increased concentration of dockable compounds in the selection
pool, as another measurement for the success of library focusing.
The EF compared to the original library is (17/88)/(29/3580)
) 23.8. Hence, using our r-SIFt based approach, we were able
to achieve a∼24-fold enrichment in the concentration of
dockable molecules.

Discussion and Conclusion

Reagent selection for automated parallel synthesis (APS) and,
in general, combinatorial library design is a task encountered
routinely during the course of lead discovery and optimization.
Typically, a subset of reagents appropriate for the underlying
chemical reaction must be selected from an often vast and
diverse list of commercially available reagents. Ideally, reagent
selection can be informed by available structural information
to generate target-focused libraries. Although it is possible to
enumerate and dock the library in order to arrive at a subset of
optimal reagents, this approach quickly runs into a limitation
due to the size of the combinatorial libraries.

In this paper, we present a general workflow for designing
target-focused chemical libraries, where information on the
desired binding mode can be directly embedded into the reagent
selection process. Key to this approach is to use the r-SIFt
method to effectively classify compounds on the basis of
whether they can interact with the target while satisfying desired
binding patterns and then use machine learning techniques to
build filtering rules that can be applied to large libraries.

The overall flowchart of this strategy is illustrated in Figure
8. This method takes advantage of the ability of SIFt (including
r-SIFt) to quickly analyze and organize large amounts of
structural data and to efficiently identify compounds consistent
with known binding modes from large docking data sets. The
strategy involves the following steps: (1) select a small pilot
library from the original large combinatorial library, with
maximized diversity; (2) calculate 2D descriptors of the whole
library of compounds; (3) dock this small library onto the target
molecule structure; (4) calculate r-SIFt or traditional SIFt
patterns for the docking poses; (5) analyze and cluster the poses
on the basis of their r-SIFt patterns; (6) on the basis of the SIFt

Figure 7. Effect of training set size on the performance of predictive
models of the 1-R1 library. Decision tree models were generated using
training sets of various sizes, and the performances were cross-validated
against an evaluation set of 500 compounds randomly selected and set
aside during model construction. The models are unstable when the
training set sizes are below 100, and they reach stable plateaus after
200.
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analysis results, classify compounds into native and non-native
groups, according to whether they are able to bind to the target
molecule with the desired binding mode or satisfy some
predefined interactions; (7) build predictive models based on
the above classifications, using the 2D descriptors of the R
groups as predictive variables; and (8) apply this predictive
model to filter the original large combinatorial library.

r-SIFt is a new variation of our SIFt specifically designed
for combinatorial libraries that offers several advantages for
library design. When represented as a heat map, the r-SIFt
patterns provide a convenient tool for direct visualization of
how the variable R groups defining the library interact with
the target molecule. More importantly, we have demonstrated
that the resultant predictive models for unique R groups are
separable and can be applied independently of each other to
select reagents for synthesis. The independence of the models
reduces library focusing to filtering at the reagent level in a
series of selection steps for each R group, thereby avoiding the
combinatorial explosion faced when focusing the enumerated
compound library. Hence, much larger libraries can be focused
than would be impossible via enumeration and subsequent
structure- or ligand-based focusing.

To investigate the performance of r-SIFt, we applied the
method to the problem of focusing a large APS combinatorial
R1× R2× R3 library down to an optimal set of commercially
available reagents. The goal of this example was to identify a
subset of reagents for R1, R2, and R3 that would be enriched
for compounds that bind in the desired binding mode to p38.
On the basis of r-SIFt classification, models for reagents were
generated from libraries where each R group was varied
independently, while the others were kept fixed. The indepen-
dent models were found to have good accuracy at predicting
the reagents that would bind as desired. To test the validity of
treating R1, R2, and R3 independently, we carried out the r-SIFt
procedure on a library where R1(100)× R2(100) were varied
simultaneously. The accuracies of the R1 and R2 models derived
from the coupled library were found to be comparable to those
obtained from the independent R group libraries. Finally, to test
the accuracy of our approach on the full combinatorial library,
an R1(100)× R2(100)× R3(100) library was enumerated and
a test subset focused using the independent R group models.
Using r-SIFt focusing, the reagents selected were enriched by
24-fold for good binders.

To capture the receptor R group preferences, the predictive
models are necessarily complex. However, some intuitive

insights can be gleaned from the models. In the previous
example, for instance, the R1 model demonstrates a preference
for compact planar, aromatic/heteroaromotic groups with small
substituents. These criteria are consistent with having to bind
in the well-defined hydrophobic pocket of p38. In contrast, the
R3 model (not shown), which corresponds to binding in the
P-loop region, selects primarily for 1,4-substituted phenyl (or
six-membered heteroaromatic) groups. Such a pattern makes
sense at the R3 position, given the prevalence of similar moieties
for p38 inhibitors.24 Finally, the R2 model (not shown) for the
adenine binding site substituent favors rings containing a
hydrogen bond acceptor and selects for longer chains with more
rotatable bonds than either R1 or R3. The R2 model trends are
consistent with binding at the hinge region of p38 that is open
and can tolerate extended chains leading to solvent. Finally,
the selection for hydrogen bond acceptor containing groups is
notable, because the critical hydrogen-bonding interaction with
the hinge11,12 was not specified as an r-SIFt constraint.

The task inherent in target-based focusing approaches is to
define, search, and identify the small chemical subspace of
compounds that can fit into the ligand-binding site with an
expected binding mode. We use r-SIFt fingerprints to define
the target constraints and apply decision tree models to
efficiently search the chemical space defined by all possible R
groups for good binders. All decision tree filters work well for
their corresponding libraries. Moreover, the predictive models
are based on 2D descriptors of the reagents and can therefore
be used as molecular filters to sift through very large libraries,
even when the cores and scaffolds may be different.

r-SIFt can be a valuable approach in applying binding mode
constraints when the expected binding mode is known. The
method is a variation and extension of the traditional SIFt
method, incorporating the binding information of different
variation points in a combinatorial library into the fingerprints.
As a result, the 3D library can be visualized and analyzed in
the target-binding site on the basis of how the variable R groups
in each library member interact with the target. The usefulness
of r-SIFt also lies in its flexibility. Depending on the library
analysis requirements, different variants can be defined by
selecting and incorporating various types of binding information
into the fingerprints.

One should keep in mind that the version of r-SIFt described
in this paper only provides information about the interaction
characteristics of ligand variable R groups with a target-binding
site. The patterns do not, however, contain more detailed

Figure 8. An r-SIFt-based chemical library focusing workflow.
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information about what kinds of interactions (hydrophobic,
polar, hydrogen bonds, etc.) are involved, as is provided by the
traditional SIFt11 and the SIFt profile (p-SIFt)12 approaches.
However, it is possible to apply more than one type of SIFt in
the library design process. For example, we can use r-SIFt to
identify a set of optimal R groups from a large pool of available
reagents, enumerate the much smaller library, and then apply
traditional SIFt to further search for molecules making specific
interactions with particular residues/subregions. Such layering
of interaction constraints would generate a pool of native
molecules that have the potential to be more specific and
selective.

In summary, the r-SIFt method described in this paper offers
a sensitive and efficient technique to discriminate the binding
characteristics of combinatorial libraries and can be used to
define a target-based reagent selection strategy for library design.
The library focusing workflow presented in this paper scales
linearly with the number of R groups (i.e., complexityO(N1 +
N2 + N3 + ... + NM), whereM is the number of variable groups,
andNi is the total number of reagents for theith variable group),
because the predictive models can be derived by treating the R
groups as independent of each other. As a result, large vendor
lists of reagents can be searched for each R group independently
without the need to enumerate the entire library (i.e., complexity
O(N1 × N2 × N3 × ... × NM)), vastly increasing the size of the
chemical space that needs to be searched. In addition, the r-SIFt
approach offers an efficient means to rank combinatorial
libraries, for example, from two vendors, on the basis of the
predicted enrichment generated from the R group models. In
conclusion, we believe that r-SIFt is a unique and novel
approach for visualizing and focusing combinatorial libraries
on the basis of their predicted interaction patterns.
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